• Skip to main content
  • Skip to primary sidebar

NMR Testing Laboratory

Industrial NMR Spectroscopy Applications

  • Home
  • About Us
    • About Process NMR
    • Our History
    • Facilities
    • Applications
    • Chemometrics
    • News and Events
  • Services
    • Price List
    • Submission Form
    • Liquid NMR
    • Solid NMR
    • Benchtop NMR
    • Consulting
    • Automated Applications
    • Expert Witness
  • Expertise
    • CV
    • Presentations
    • Reviews and White Papers
  • Blog
  • Contact
You are here: Home / Archives for Benchtop NMR

The Chemical Fingerprint of Beer from a Single Experiment with Minimum Sample Preparation – A Rapid Quantitive Analysis by 1H NMR Spectroscopy

September 7, 2016 by process nmr Beer, Benchtop NMR, Chemistry, Cider, Craft Beverage, NMR, NMR Test Methods, NMR Validation, qNMR Tagged: Beer, Ethanol, Fingerprint, Malt, NMR, Organic Acid, Quality

NMR Spectroscopy is the premier tool utilized by chemists to obtain detailed chemical information on molecular structure and is used extensively in molecular structure verification, chemical purity analysis, and complex mixture analysis. We have developed a quantitative NMR analysis that yields a chemical fingerprint that brewers can utilize to follow detailed variations in the chemistry observed in the various stages of the brewing process (malting, mashing, boiling, fermentation, ageing, and blending). The analysis observes all molecules in the beer at the same time and each molecular component (acids, alcohols, amino acids, malt-oligosaccharides) yields a unique spectral fingerprint pattern that is related to the structure of the molecule. Though the spectrum consists of a large number of overlapped individual fingerprints it is possible to identify and quantify individual components because many components have signals that appear at unique and specific points in the spectrum. The quantitative analysis is performed by comparing the area under the individual molecule signals to that of an internal standard (Maleic Acid 99%). Molecular components are quantified on a weight/volume basis in mg/L (parts-per million). Ethanol is also quantified on a %volume/volume basis.

The technique is not only applicable to the brewing process but is also being utilized to gain detailed chemical understanding of cider-making process, as well as the production of wine, mead, sake, spirits, and kombucha. Our laboratory has been developing this method with the help of a number of breweries following changes in batches of standard beers (Kolsch, Stout, Scots Ale, Barley Wine) as the brewing process is tweaked and changed over the course of 2 years. We have looked not just at finished beers but have studied dextrin solubility and chemistry of wort made from different malts, the effect of temperature on sour mashing, the effect of wild yeast and bacteria on various aspects of beer chemistry, as well as troubleshooting of “out of sensory target range” beers. The analysis requires very little sample preparation, has a large (orders of magnitude) linear concentration range of applicability and observes a large number of components in a single test that does not require constant re-calibration with expensive standards.

A poster was presented on this topic at the World Brewing Congress held August 1-17 in Denver Colorado – the poster can be downloaded here.

PANIC NMR Validation Group – Website, Meetings and Organization

June 18, 2015 by process nmr Benchtop NMR, NMR, NMR Test Methods, NMR Validation, PAT, Process NMR, qNMR, TD-NMR

Validation of NMR: No Need to PANIC – Workshop held February 13, 2015, La Jolla, CA, U.S.A

In conjunction with the 3rd PANIC conference in La Jolla, California, a 1-day NMR validation workshop was held that attracted approximately 80 interested participants. The agenda of the meeting is provided at this link (http://www.nmrvalidation.org/index.php/events/event-review) and registered participants can now download the presentations presented at the meeting. At the meeting it was decided to proceed with the idea of founding an organization dedicated to the development of validate NMR methods for use throughout all industry sectors.

Organizational Scope:

NMR spectroscopy provides a means to evaluate material with high compound and high material specificity. Information as to the chemical structure, stereochemistry, quantity, material composition, and material identity is encoded in the NMR spectrum. The high reproducibility of NMR spectroscopy from instrument to instrument and lab to lab makes NMR an excellent tool for material validation. Approaches to utilizing NMR as a material validation tool include using (1) targeted approaches, the identification and quantification of specific components, and (2) non-targeted approaches, the use of chemometric methods to evaluate the spectrum as a whole. Efforts to increase the number and the speed of validated NMR methods are underway. This promises to move NMR technology from R&D to a mainstream analytical tool for production leading to high quality product assessment.

Quantitative NMR spectroscopy (qNMR) provides the most universally applicable form of direct purity determination without the need for reference materials of analytes or the calculation of response factors, with the only requirement being the exhibition of suitable NMR spectral properties. Due to recent advances in the technical development of NMR instruments, such as acquisition electronics and probe design, detection limits of components in liquid mixtures have been improved into the lower ppm range (approx. 5–10 ppm amount of substance).

The development of validated procedures and qualified standards will give users the tools to routinely exploit qNMR and enable them to speed up analytical method development, with the added advantage of reducing the time and financial burden of multiple analytical testing.

Over the last few years a number of efforts have been made to include NMR in routine testing and analysis – especially in regulated fields such as those operating under GMP or GLP guidelines. Unfortunately it has been observed that approval authorities, standard method organizations, and auditors prefer to take analytical routes derived from classical chromatographic methods. Since NMR represents a direct comparison analysis method such decisions clearly fail to take advantage of the benefits that NMR can provide.

The PANIC validation group proposes to become a driving force in getting NMR methods validated, publicized, and supported by documentation and qualified standards. The organization will also provide a mechanism for repeatability/reproducibility assessment of NMR methods as well as the round-robin accreditation of NMR labs. We aim to proactively promote the technology and improve its acceptance by the analytical community across all industry sectors.

What we want:

  • Identify a network of NMR people concerned with validation that can ultimately assist each other through the validation process.
  • Harmonize the terminology and a standard approach for NMR validations.
  • Position the guidelines produced by consensus of the NMR community so that accreditation agencies can use this process.

It is expected that there will be an annual 1-day meeting in conjunction with future PANIC conferences. A website has been been created as an organizational repository. The website can be found here: http://www.nmrvalidation.org/index.php and details of future events and, eventually, contact information will be provided.

1H qNMR of Alcoholic Cider – Analysis of Small Molecule and Residual Sugar Chemistry

June 8, 2015 by process nmr Beer, Benchtop NMR, Chemistry, Cider, NMR, qNMR

1H quantitative NMR (qNMR) has been utilized to assess the the small molecule and carbohydrate chemistry of a number of home-brewed and commercial alcoholic ciders. A quantitative chemistry distribution of the products of the various fermentations that occur in cider making. Malolactic fermentation as well as fermentation by saccharomyces and wild yeasts occur in the cider making process which traditionally occurred without the intentional addition of yeast by the manufacturer. The distribution of small molecules produced by the yeast and bacterial metabolomes at work in the process can yield information of the sensory perception of ciders produced in different ways. An investigation of the residual sugar chemistry of commercial ciders gives some indication of the process of sweetening commercial cider products with sugar additions after fermentation is complete. These typical commercial ciders are very different in chemistry distribution compared to very dry cider styles such as those found in the Basque region of Spain where fermentation is taken to the extreme resulting in complete conversion of sugars to alcohol but also glycerols to 1,3 propandiol. Finally it was decided to determine how much quantitative chemistry information could be obtained from benchtop NMR systems operating in the 60 MHz range. These benchtop NMR systems have a price and cost-of-ownership that would allow small laboratories of manufacturers to think about their use in QA and QC roles.

1H qNMR analysis of molecular components in hard cider – targeted and non-targeted quantitative chemical analysis

PNA to Present 4 Topics at the 2015 ACS North East Regional Meeting

May 17, 2015 by process nmr Beer, Benchtop NMR, Chemometrics, Cider, Energy, Herbal Supplement, NMR, PAT, Petroleum, qNMR

John Edwards of Process NMR Associates will be presenting 4 papers at the 2015 ACS Northeast Regional Meeting that will be held in Ithaca, NY, June 10-13, 2015.

ABSTRACT ID: 2283171
ABSTRACT TITLE: 1H qNMR of Alcoholic Cider – Analysis of Small Molecule and Residual Sugar Chemistry (final paper number: 43)
SESSION: Food Chemistry
SESSION TIME: 5:00 PM – 9:00 PM
PRESENTATION FORMAT: Poster
DAY & TIME OF PRESENTATION: Wednesday, June, 10, 2015, 5:00 PM – 9:00 PM
ROOM & LOCATION: Emerson Suites – Campus Center

ABSTRACT ID: 2283063
ABSTRACT TITLE: Nutritional Supplement and Diesel Fuel Application Development for Benchtop NMR Systems Operating at 42, 60, and 80 MHz – Equivalency with Supercon NMR (final paper number: 336)
SESSION: Analytical Chemistry
SESSION TIME: 9:00 AM – 11:30 AM
PRESENTATION FORMAT: Oral
DAY & TIME OF PRESENTATION: Friday, June, 12, 2015 from 9:45 AM – 10:05 AM
ROOM & LOCATION: 222 – Williams Hall

ABSTRACT ID: 2283105
ABSTRACT TITLE: Survey of Low Field NMR Spectrometer Platforms for Successful Screening of Sexual Enhancement and Weight Loss Supplements for Adulteration with Drugs and Drug Analogs (final paper number: 386)
SESSION: Medicinal Chemistry
SESSION TIME: 1:00 PM – 3:20 PM
PRESENTATION FORMAT: Oral
DAY & TIME OF PRESENTATION: Friday, June, 12, 2015 from 2:20 PM – 2:40 PM
ROOM & LOCATION: 302 – Williams Hall

ABSTRACT ID: 2283153
ABSTRACT TITLE: From Mash to Bottle: Chemistry of the Beer Brewing Process and NMR-based Quality Control (final paper number: 284)
SESSION: Food Chemistry
SESSION TIME: 1:30 PM – 3:10 PM
PRESENTATION FORMAT: Oral
DAY & TIME OF PRESENTATION: Thursday, June, 11, 2015 from 1:35 PM – 1:55 PM
ROOM & LOCATION: 202 – Williams Hall

Essential Oil Analysis – Comparison of 1H NMR from Benchtop and Supercon NMR Systems

March 8, 2015 by process nmr Benchtop NMR, Chemistry, qNMR

1H NMR shows excellent promise to be utilized in the quality control and authentication of essential oils. In order to ascertain if benchtop NMR systems reveal adequate “1H spectral fingerprints” for this purpose we have run several hundred essential oils at 300 MHz (Varian Mercury-300 MVX by 1H, 13C, COSY, HETCOR, DEPT)  as well as at 82.3 MHz (Picospin 80), 60 MHz (Aspect-60), and 42.5 MHz (Magritek Spinsolve). The results plainly show that the spectrometers all yield similar proton line-widths with the difference in field strength leading to different levels of spectral dispersion and resolution. Though each spectrum is different it can plainly be seen that they all contain the same information with varying degrees of overlap. Chemometric and database comparative methods are being developed to allow identification of various essential oils as well as screening and quantifying different levels of adulteration. The figures below show examples from 6 different essential oils showing spectra obtained from all 4 spectrometers and plotted in the normalized chemical shift scale (ppm) as well as the absolute frequency scale (Hz).EO1 EO2 EO3 EO4 EO5 EO6 EO7 EO8 EO9 EO10 EO11 EO12

  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Go to Next Page »

Primary Sidebar

  • Home
  • About Us
    • About Process NMR
    • Our History
    • Facilities
    • Applications
    • Chemometrics
    • News and Events
  • Services
    • Price List
    • Submission Form
    • Liquid NMR
    • Solid NMR
    • Benchtop NMR
    • Consulting
    • Automated Applications
    • Expert Witness
  • Expertise
    • CV
    • Presentations
    • Reviews and White Papers
  • Blog
  • Contact

Categories

  • Beer
  • Benchtop NMR
  • Chemistry
  • Chemometrics
  • Cider
  • Craft Beverage
  • Energy
  • ESR
  • Herbal Supplement
  • IR-ATR
  • NIR
  • NMR
  • NMR Test Methods
  • NMR Validation
  • PAT
  • Petroleum
  • Process NMR
  • qNMR
  • Reaction Monitoring
  • TD-NMR
  • Uncategorized

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org

Follow Us

Follow us on social media to stay on track with the latest news.

Twitter
Facebook
RSS

Search

Blogroll

  • Carlos' NMR Software Blog
  • Mestrelab Blog – NMR Data Processing Software
  • NMR Wiki
  • Stan's NMR Blog
  • University of Ottawa – NMR Facility Blog
  • Home
  • About Us
  • Services
  • Expertise
  • Blog
  • Contact

Copyright © 2023 · Process NMR · All Rights Reserved.
Handcrafted with by Studiodog Group