• Skip to main content
  • Skip to primary sidebar

NMR Testing Laboratory

Industrial NMR Spectroscopy Applications

  • Home
  • About Us
    • About Process NMR
    • Our History
    • Facilities
    • Applications
    • Chemometrics
    • News and Events
  • Services
    • Price List
    • Submission Form
    • Liquid NMR
    • Solid NMR
    • Benchtop NMR
    • Consulting
    • Automated Applications
    • Expert Witness
  • Expertise
    • CV
    • Presentations
    • Reviews and White Papers
  • Blog
  • Contact
You are here: Home / NMR / 1H Benchtop NMR Analysis of Physical and Chemical Properties of Diesel Fuel

1H Benchtop NMR Analysis of Physical and Chemical Properties of Diesel Fuel

February 26, 2015 by process nmr NMR

1H Benchtop NMR has great potential to increase the throughput of both routine and emergency fuel sample analysis in refinery laboratories. Currently fuel samples must be passed through multiple dedicated analyzers to obtain information such as density, H-Content, aromatics, olefins, saturates, benzene,
Octane numbers, cetane index, cetane number, distillation curves, vapor pressure, flash point, pour point, freeze point, cloud point, etc. Correlation of the 1H NMR spectra of these refinery fuel samples to these primary test results will allow all parameters to be predicted in about 40 seconds from the 4 pulse spectrum of the pure fuel. Here we have a few examples obtained on some diesel fuels that were submitted to our lab for ASTM D7171 – Hydrogen Content by TD-NMR. We had density, H-content, and aromatics wt% by GC. Below are three example correlation obtained on the Picospin 80 system (that requires 32 pulses per sample due to the capillary sample size). The results were very similar for the 300, 60, and 42 MHz data obtained on the three other NMR system in our laboratory. The comparative results are shown in Table II. The results are very similar independent of the field strength of the NMR system. The data from all 4 NMR systems is provided in this section.

300 MHz 1H NMR - Diesel Fuels
300 MHz 1H NMR – Diesel Fuels
80 MHz 1H NMR - Diesel Fuels
80 MHz 1H NMR – Diesel Fuels
60 MHz 1H NMR - Diesel Fuels
60 MHz 1H NMR – Diesel Fuels
43 MHz 1H NMR - Diesel Fuels
43 MHz 1H NMR – Diesel Fuels
1H NMR and Density Correlated by PLS Regression Analysis
1H NMR and Density Correlated by PLS Regression Analysis
1H NMR andAromatic Content (Wt% GC) Correlated by PLS Regression Analysis
1H NMR andAromatic Content (Wt% GC) Correlated by PLS Regression Analysis

1H NMR and Hydrogen Content (Wt% TD-NMR ASTM D7171) Correlated by PLS Regression Analysis

Summary Table of Regression Models
Summary Table of Regression Models

Primary Sidebar

  • Home
  • About Us
    • About Process NMR
    • Our History
    • Facilities
    • Applications
    • Chemometrics
    • News and Events
  • Services
    • Price List
    • Submission Form
    • Liquid NMR
    • Solid NMR
    • Benchtop NMR
    • Consulting
    • Automated Applications
    • Expert Witness
  • Expertise
    • CV
    • Presentations
    • Reviews and White Papers
  • Blog
  • Contact

Categories

  • Beer
  • Benchtop NMR
  • Chemistry
  • Chemometrics
  • Cider
  • Craft Beverage
  • Energy
  • ESR
  • Herbal Supplement
  • IR-ATR
  • NIR
  • NMR
  • NMR Test Methods
  • NMR Validation
  • PAT
  • Petroleum
  • Process NMR
  • qNMR
  • Reaction Monitoring
  • TD-NMR
  • Uncategorized

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org

Follow Us

Follow us on social media to stay on track with the latest news.

Twitter
Facebook
RSS

Search

Blogroll

  • Carlos' NMR Software Blog
  • Mestrelab Blog – NMR Data Processing Software
  • NMR Wiki
  • Stan's NMR Blog
  • University of Ottawa – NMR Facility Blog
  • Home
  • About Us
  • Services
  • Expertise
  • Blog
  • Contact

Copyright © 2025 · Process NMR · All Rights Reserved.
Handcrafted with by Studiodog Group