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Abstract

In recent years near-IR spectroscopy has gained a firm foothold as
the on-line process analyzer of choice for gasoline analysis at
blending terminals and refineries. We are presently investigating the
applicability of 'H process NMR instrumentation to the field of on-
line gasoline analysis and have developed multivariate calibration
models using partial least squares (PLS) analysis to correlate the
NMR data with gasoline properties derived from other techniques.
This presentation will demonstrate the accurate prediction of octane
number (RON, MON, (R+M)/2) (obtained from ASTM method
engine knock data), as well as the saturate, aromatic, olefin, and
oxygenate content of a large number of gasolines from various
regions of the country. The NMR data obtained from both a process
FT-NMR system and a laboratory superconducting NMR system,
will be compared along with the results obtained by a near-IR system
on the same samples.
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Background

The octane number (ON) represents a measure of the degree to which a gasoline is
predisposed to cause engine knocking (pre-ignition of the gasoline in the combustion
chamber). The higher the value of the ON the less apt the gasoline is to allow knocking.
Higher ON gasolines allow use of high compression ratios and advanced ignition timing,
resulting in greater power output, improved efficiency, and reduced fuel consumption.

Three different octane numbers are used:
Research Octane Number (RON) - Obtained by ASTM CFR engine test D2699

Typical Values 88-100, Standard error = 0.41
Motor Octane Number (MON) - Obtained by ASTM CFR engine test D2700

Typical Values 79-90, Standard error = 0.61
Road Octane (R+M)/2 - Obtained from average of RON and MON values

Typical Values 84-94, Standard error = 0.36

Octane increasing functionality includes:
aromatics, branched paraffins, olefins(?), oxygenates.

With recent EPA/CARB sanctioned fuel reformulations other properties that need
to be analyzed are aromatics/benzene/saturates/olefins/oxygenates/vapor pressure.
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Economic Impact of Octane Control

Refinery Gasoline Blend Header Control

Refineries (which can produce up to 4 million gallons of gasoline a day) strive to produce
gasoline with a specific target octane which will meet the demands of the motoring public
while using a minimum volume of the more expensive high octane blending stocks (such
as reformate and alkylate). Optimization of the blending process to within a few tenths of
the target octane translates into millions of dollars of octane not being “given away”
during the course of a year. At the present time the on-line analyzer of choice is a near-IR
instrument which utilizes multiplexing of the near-IR source through a number of
fiber-optic cables. Systems costing $650K can effectively control 19 blending streams.
However, sample conditioning is required in some situations, and long periods of on-line
calibration are a prerequisite.

“At-the Pump” Quality Monitoring Programs

With the introduction of reformulated fuel regulations refiners and fuel marketers must
have their products meet multiple physical and property targets or face the possibility of
paying hefty fines With this in mind many quality monitoring programs have been
developed. At Texaco, for instance FT-IR (both near and mid) are utilized in a mobile
testing van program which tests the gasolines at the service station, and in a blending
terminal program where gasoline is blended with additive packages before distribution to
the service stations.
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Present Gasoline Analysis Systems

ASTM CFR Engine Tests
ASTM D2699 - Measures RON, Standard Error = 0.41 ON

ASTM D2700 - Measures MON, Standard Error = 0.61 ON

Aside from the large standard error other problems that are associated with the ASTM
tests are that it is not a continuous (on-line) method, it requires a large sample volume

(400 ml), there is an obvious spark hazard, substantial maintenance, and an expert
operator is required.

Near/Mid-IR Spectrometers

The spectra obtained on a training set of samples are analyzed by partial least squares
(PLS) analysis and calibrated against numbers obtained from primary calibration
techniques. For octane the primary calibration is the ASTM CFR engine test, for
oxygenates it is GC-OFID, for saturates and olefins it is the GS-500 IR analyzer, and for
aromatics it is GC-MS.

Typical results obtained on 54 gasolines from Phoenix and Portiand (which form the basis
of the TH NMR investigation are:

From Near-IR From Mid-IR
RON Std Error=0.33 R? =0.985 Aromatics Std Error=0.77 R? =0.,982
MON Std Error=0.26 R? =0.977 Saturates Std Error=0.82 R? =0.985

(R+M)/2 Std Error =0.26 R? =0.985 Olefins Std Error=0.50 R2? =0.976
MTBE Std Error=0.33 R? =0.996
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I'H NMR Study
Samples

54 regular, super, and premium unleaded gasoline samples samples from Phoenix & Portland
Primary Calibrations: RON, MON, R+M/2 - ASTM D2699/D2700

MTBE (wt%) - GC-OFID

Aromatics, saturates, and olefins - GS-500 hand-held IR analyzer.

NMR Experiments
1H NMR experiments performed on two instruments for comparison:

Varian UnityPlus-300 Spectrometer
(n/6 pulse, 4 s acquisition, 32 transients)

Elbit-ATI, Series 2000, 54.7 MHz FT-NMR Spectrometer
(n/6 pulse, 12 s acquisition, 16 transients, external "Li lock)

Calibration Method

For each of the 54 'H NMR spectra, 100 normalized integral values were analyzed by
PLS for correlation with RON, MON, (R+M)/2, MTBE, aromatics, saturates, and olefins.
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RON - D2699/D2700
Predicted vs. Actual ~ PLS w/ 14 factors (using centered NMR spectra)
N=54 samples, SEP=0.31, Avg. error=0.22, Max. error=0.73, Bias=-0.005, R-5q=98.2
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RON - D2699/D2700
Coefficients for NMR spectra — PLS w/ 14 factors (using centered NMR spectra)
N=54 samples, SEP=0.31, Avq. error=0.22, Max. error=0.73, Bias=-0.005, R-sq=98.2
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MON - D2699/D2700
Predicted vs. Actual - PLS w/ 10 factors (using centered NMR spectra)
N=54 samples, SEP=0.24, Avg. error=0.20, Max. error=0.59, Bias=-0.007, R-sq=97.5

Varian UnityPlus-300 NMR Data
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MON - D2699/D2700
Coefficients for NMR spectra — PLS w/ 10 factors (using centered NVR spectra)
N=54 samples, SEP=0.24, Avg. error=0.20, Mox. error=0.59, Bios=-0.007, R-sq=97.5
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MTBE - GCOFID
Predicted vs. Actual - PLS w/ 4 factors (using centered NMR spectra)
N=54 samples, SEP=0.30, Avg. error=0.23, Max. error=0.79, Bias=+0.004, R-sq=99.7
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Coefficient
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MTBE - GCOFID
Coefficients for NMR spectra ~ PLS w/ 4 factors (using centered NMR spectra)
N=54 samples, SEP=0.30, Avg. error=0.23, Max. error=0.79, Bias=+0.004, R-sq=99.7
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Predicted Qlefins
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Olefins — GS—-500
Predicted vs. Actual — PLS w/ 9 factors (using centered NMR spectra)
N=54 samples, SEP=0.92, Avq. error=0.78, Max. error=1.88, Bias=+0.006, R-sgq=91.2
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Coefficient
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Olefins — GS-500
Coefficients for NMR spectra ~ PLS w/ 9 factors (using centered NMR spectra)
N=54 samples, SEP=0.92, Avg. error=0.78, Max. error=1.88, Bias=+0.006, R-sq=91.2
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Saturates - GS-500

Predicted vs. Actual — PLS w/ 8 factors (using centered NMR spectra)
N=54 samples, SEP=1.05, Avg. error=0.79, Max. error=4.04, Bias=+0.004, R-sq=97.6
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Saturates — GS-500
Coefficients for NMR spectra — PLS w/ 8 factors (using centered NMR spectra)
N=54 samples, SEP=1.05, Avg. error=0.79, Max. error=4.04, Bias=+0.004, R-sq=97.6
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Predicted Aromatics
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Aromatics — GS-500
Predicted vs. Actual - PLS w/ 8 factors (using centered NMR spectra)
N=54 samples, SEP=0.86, Avg. error=0.67, Max. error=2.77, Bias=+0.007, R-sq=96.9

Actual Aromatics
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Aromatics = GS-500
Coefficients for NMR spectra — PLS w/ 8 factors (using centered NMR spectra)
N=54 samples, SEP=0.86, Avg. error=0.67, Max. error=2.77, Bias=+0.007, R—sq=96.9
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Predicted : RON

54 Phoenix/Portland Gasolines TE: 1.72875

Process NMR Associates
RCSCBI'Ch Octane Number R .9B9836

Primary Calibration ASTM D2699

RMSD: 239734
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54 Phoenix/Portland Gasolines TE: 187348
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il’:i Motor Octane Number R®: .969622 roCess N M R ASSOCIateS

Primary Calibration ASTM D2700

RMSD: .257342
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54 Phoenix/Portland Gasolines TE: 1.9763 _
e INLA) Road Octane Number . a70305 Process NMR Assoclates

Primary Calibration ASTM D2700/D2699

RMSD: .271878
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TE: 2.71681

54 Phoenix/Portland Gasolines —— Process NMR Associates

il’:i _ Oxygenate Content (Wt%) (GC-OFID)

RMSD: .373183
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Predicted : R+M/2

171 Gasoline Samples From Arizona, Washington, TE: 3.65806
Oregon, California, Oklahoma, Nevada, Alaska, Process NMR Associates
and Hawaii. Re: 882879
Road Octane Number RMSD: .262023
Primary Calibration ASTM D2700/D2699
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Comparison of Data Obtained From Near/Mid-IR, High Field NMR,
and Process NMR Calibrations

Method RON [MON [R+M/2[ MTBE [ Aromatics | Saturates | Olefins

MidiNear-IR =1 033 | 026 |026 | 033 | 077 | 0.50 0.82

High Field NMR | 0.31 | 0.24 | 0.16 | 0.30 | 086 | 0.9 1.0

Process NMR 0.24 | 0.26 | 0.27 | 0.37 1.14 0.93 1.53
Conclusions

In the field of gasoline property analysis low field 'H FT-NMR spectrometers can compete
favorably with near-IR process equipment, and can also yield results comparable to what
can be obtained from high-field NMR instrumentation. The NMR methods have the
advantage over near-IR methodologies in that inter-spectrometer calibration is not
necessary, the models appear to be less sensitive to crude slate, no sample conditioning is
necessary, and the equipment could conceivably be less expensive. Process NMR in
combination with the appropriate data processing and chemometric analyses can be readily

applied to many on-line analysis processes. The methods applied here can be readily
applied to diesel fuel property analysis.



