
 Utilization of MNova in a Commercial NMR Testing Laboratory for :
 1) Development of Automated Quantitative Analysis Methods by Direct Internal Standard NMR Measurements, and
 2) Pre-Processing of Large NMR Datasets for Chemometric Regression Analyses to Derive Chemical and Physical Properties

> John Edwards Process NMR Associates, LLC, Danbury, Connecticut

September 22, 2013 MestreLab MNova Users Meeting, SMASH 2013 Santiago de Compostela, Spain

250+ Analytical NMR Customers

Quantitative ¹H qNMR Method for Complex Mixture Analysis: Determination of Acetylated Polysaccharides, Glucose, Maltodextrin, Isocitrate, Malic Acid in Aloe Vera Leaf Juice.

Also ... Preservatives, Additives, and Degradation Products in Aloe Vera Raw Materials and Consumer Products

Presented By

John Edwards, Ph.D.

Process NMR As sociates, LLC Danbury, Connecticut November 9, 2012 Aloe Summit, Las Vegas, NV

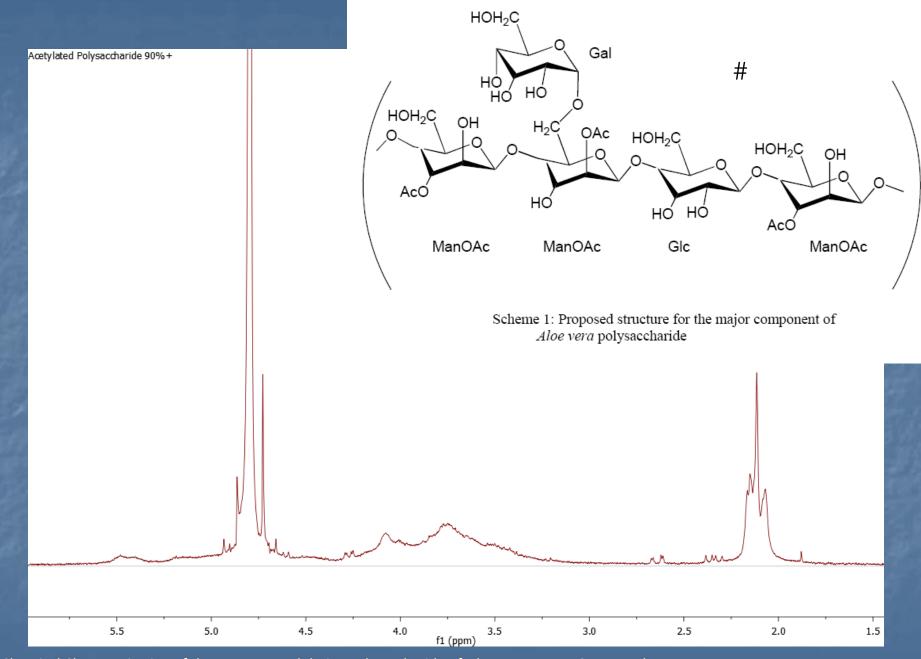
Development of Automated Quantitative Analysis Methods by Direct Internal Standard NMR Measurements

FERRE

PROCESS NMR ASSOCIATES

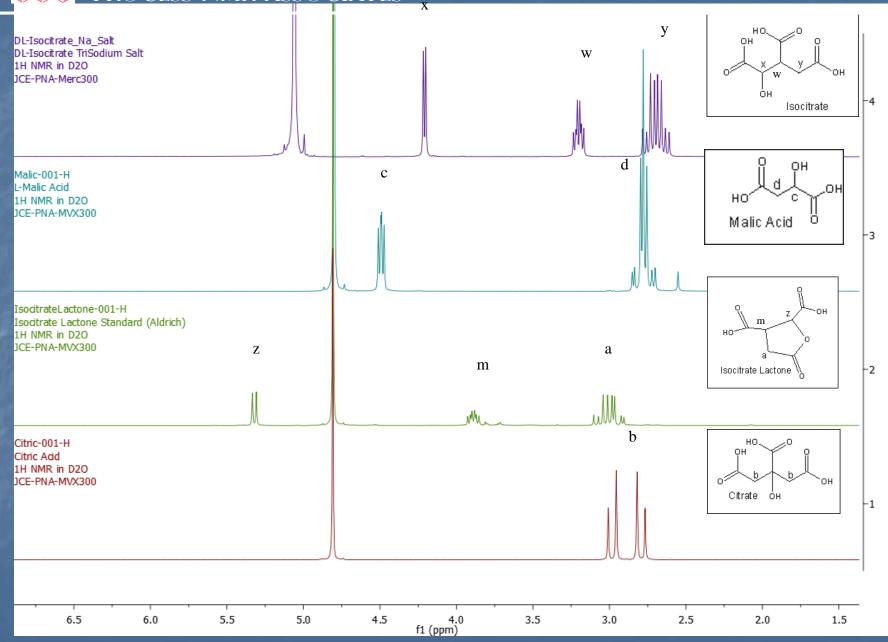
NMR Systems and Experimental Conditions

	Acquisition Time	3-8 Seconds	Tould second
	Relaxation (Recycle) Delay	2-6 Seconds	WEN IN GRADE
	Frequency, MHz	300-500 MHz	
	Nucleus	¹ H	
	Number of Pulse Accumulations*	16-256	1 - for the
	Original FID Points	16384-84000	
	Zero-filled Points	32768-262144	NATIONAL PROPERTY.
	Pulse sequence	Single pulse	Real Property and the second s
dell'all	Solvent	D_2O	· THE DESIGNATION
-	Sweep width, ppm	16	
- Hu	Temperature	Ambient (25 °C)	
	Line Broadening	0.35 Hz	
	Steady State Pulses	8	
	Pre-Acquisition Delay	60 seconds	
S.F. C. C.		And a state of the	


Advantages of Using NMR in Complex Mixture Analysis

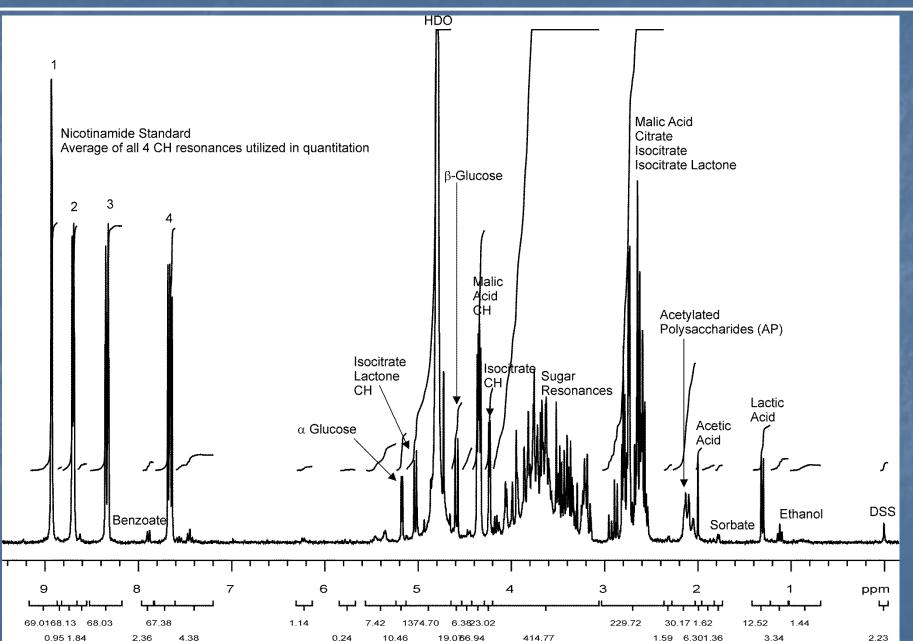
Minimal Sample Preparation
Reproducible (site to site, country to country)
Linear and Quantitative Spectral Response
Targeted AND Non-Targeted
Qualitative
Quantitative
Compound Specific
Rapid – 10 Minutes
Affordable

Aloe Vera Inner Leaf Juice Constituents and Additives that need to be Analyzed and Reported for IASC Certification


Compound	IASC Certification requirement
Acemannan Acetylated PS	≥ 5% dry weight
Glucose	Present
Aloin	10 ppm or less in 0.5% aloe vera solids solution, analysed by HPLC or other fit for purpose methodology approved by IASC
Isocitrate	≤ 5% dry weight
Maltodextrin	Must be listed on label and analysis must meet label claims. If undeclared, is considered an adulterant.
Solids	\geq 0.46% in single-strength juice (for example, a 10x concentrate should have \geq 4.6%)
Ash	≤ 40%

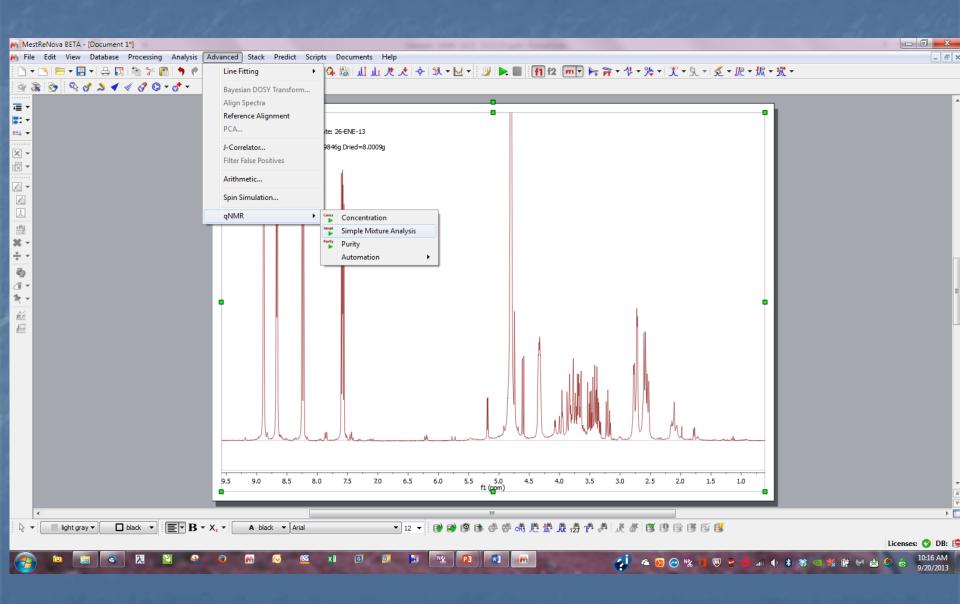
Chemical Characterization of the Immunomodulating Polysaccharide of Aloe Vera L., W.J.Goux, et al,

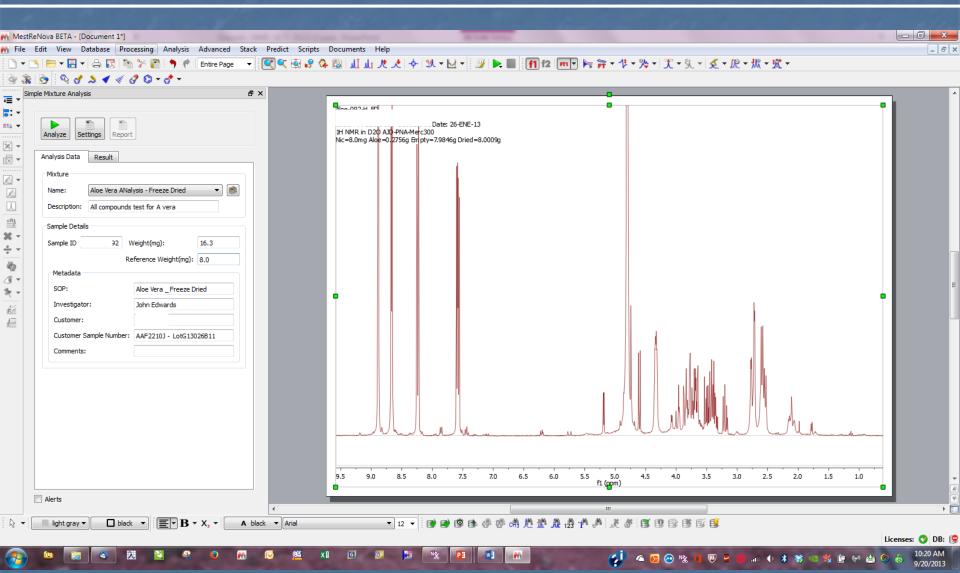
http://www.iasc.org/AloeStructure080604.pdf


PNA

Commercial freeze-dried 200x aloe vera leaf juice powder

PROCESS NMR ASSO<u>CIATES</u>

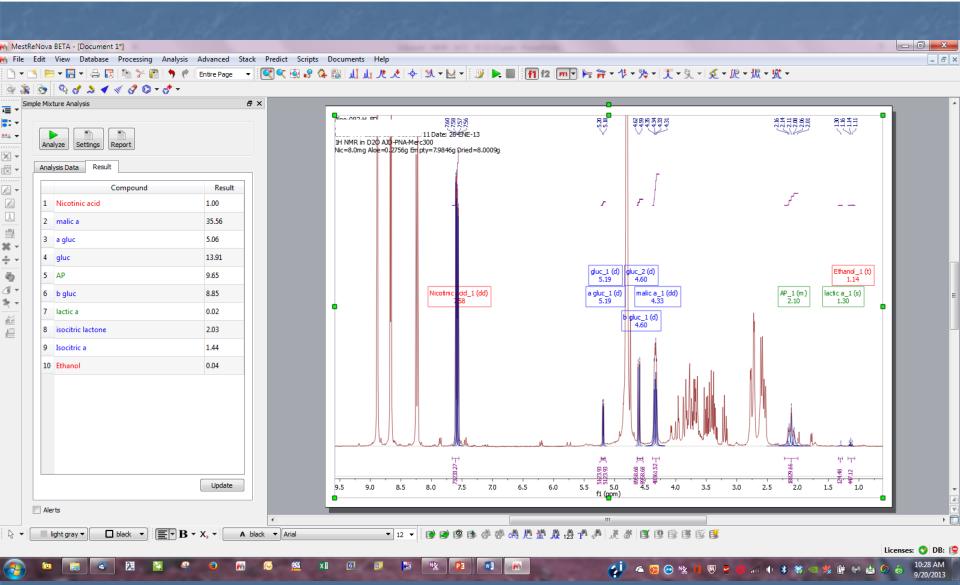


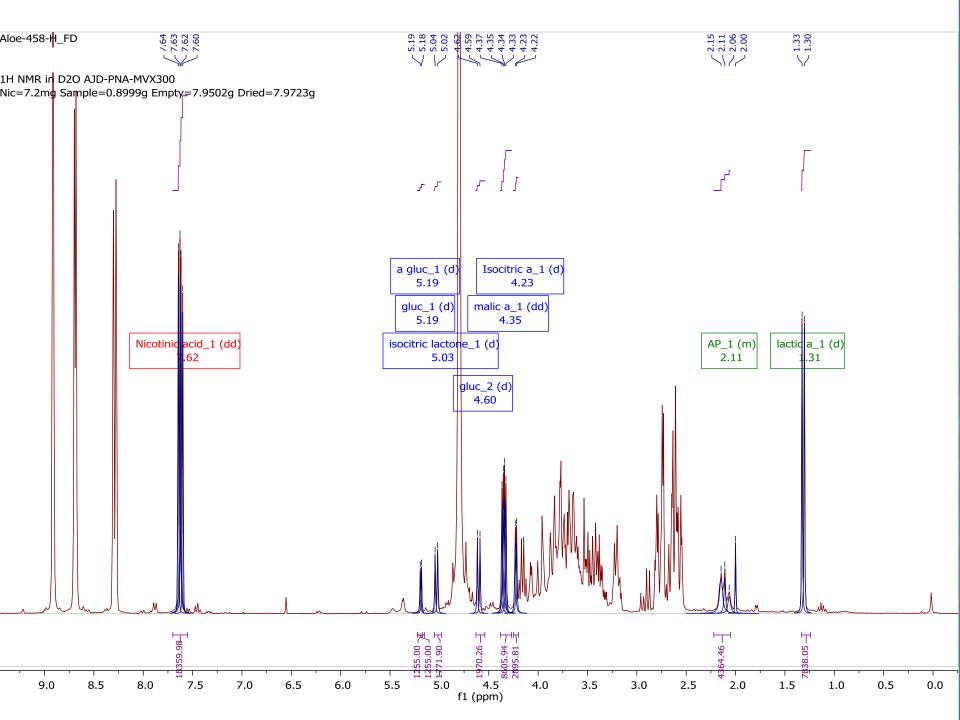

Chemical shift values, peak and chemistry descriptions, molar conversion factors that can be used for detection and quantitation of aloe vera leaf juice preservatives, additives, and degradation products

Compound	Type of compound	Signal type	Chemical shift,
			ppm
Propylene glycol	Additive	CH ₃ , doublet (N=3)	1.1
Ethanol	Degradation product or additive	CH ₃ , triplet (N=3)	1.15
Lactic acid	Degradation product	CH ₃ , doublet (N=3)	1.33
Potassium sorbate	Preservative	CH ₃ , doublet (N=3)	1.82
Acetic acid	Degradation product	CH ₃ , singlet (N=3)	1.96
Pyruvic acid	Degradation product	CH ₃ , singlet (N=3)	2.35
Citric acid	Naturally present or added as pH	2 x CH ₂ , Multiplet (N=4)	2.5-3.0
	regulator or preservative		
Succinic acid	Degradation product	2 x CH ₂ , singlet (N=4)	2.6
Glycerol	Additive	CH ₂ and CH, multiplet	3.5
Glycine	Additive	CH ₂ , singlet (N=2)	3.51
Sucrose	Additive	CH, doublet (N=1)	5.4
Fumaric acid	Degradation product	2 x CH, singlet (N=2)	6.5
Sodium benzoate	Preservative	2 x CH, doublet (N=2)	7.95
Formic acid	Degradation product	CH, singlet (N=1)	8.2-8.3

ixture Analysis	″ ♂ © - ♂ - ∄ ×	O	
nalyze Settings Re nalysis Data Result Mixture	Port ANalysis - Freeze Dried	Jil Date: 26-ENE-13 H NMR in D20 AD -PNAMe C300 Nic-8.0mg Alor-0.2756g En pty=7.9846g Dried=8.0009g It library It library It library: D: provide the state of	
Metadata SOP: Investigator: Customer: Customer Sample Numb Comments:	Aloe Vera _ Freeze Dried John Edwards	All compounds test for A vera 2 Aloe Vera ANalysis - Freeze Dried All compounds test for A vera 3 Aloe - Acid - Maltodextrin - WL All compounds test for A vera 4 t5 All compounds test • • •	•
lerts		9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 f1 (ppm)	_

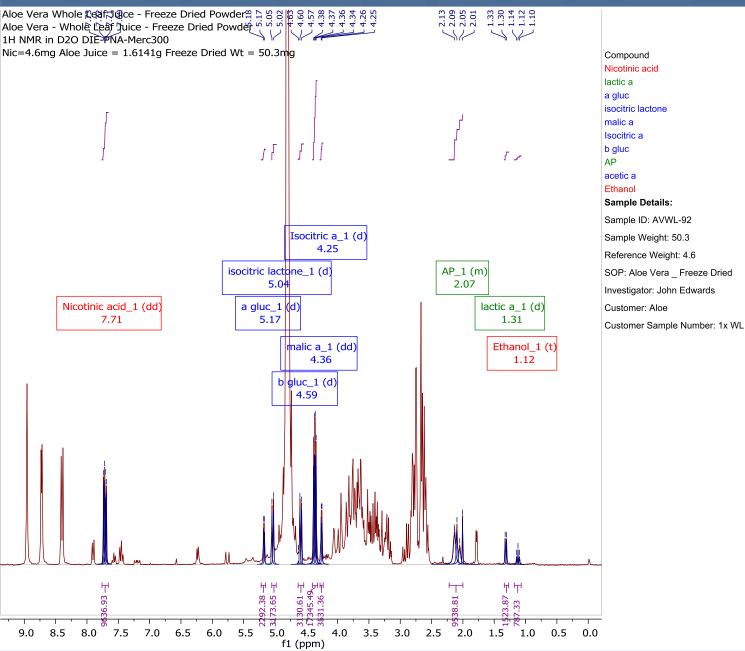
👂 🔍 🔗 為 🗹 🚿 🔗 🔘 🗸 👌	今 (*) Entire Page → (1) (1) (1) (1) (2) (2) (2) (2) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
Mixture Analysis	Reperiment ?	
	Experiment	•
	Name: Aloe Vera ANalysis - Freeze Dried	
Analyze Settings Report	All compounds test for A vera	
nalysis Data Result		22 8
Mixture		
Name: Aloe Vera ANalysis - Freeze	Description:	
Description: All compounds test for A ver		
All compounds test for A ver		
Sample Details	Compound Type Mol Weight Color Spectrum	
Sample ID 92 Weight(mg):		
Reference Weig	ght(mg)	
Metadata	gluc Compound 180.16 Blue 1	
SOP: Aloe Vera _	Freeze Isocitric a Compound 192.12 Blue 1	
Investigator: John Edward	isocitric lactone Compound 174.11 Blue 1 -	
Customer:		
Customer Sample Number: AAF2210J -	LotG1: Compound Editor	
Comments:	Name: malic a	
		Cancel
	Type: Compound V Acceptable Limit From: 1 To: 20	
	Formula	
	100°(RW*I1%NR1*MW)/(IR1%NN1*MWR*S Editor From To NN	
		· · · · · · · · · · · · · · · · · · ·
	OK Cancel 5.0 4.5 4.0	3.5 3.0 2.5 2.0 1.5 1.0
Alerts		•




🖹 💿 🤐 🔗 🗶 🖌 💉 🧭 🕲 👻 👉 🗸	Entire Page ▼ 🔯 🗣 🕸 🚛 🥂 🧶 🔸 🔍 ▼ 🖄 ▼ 🖄 ▼ 🔛 ▼ 🕅 12 🗩 🖬 🚹 12 🗩 ♥ 🛠 ▼ 🏃 ▼ 🧏 ▼ 🧏 ▼ 🧏 ▼ 🕅 ▼ 🕅 12 🗩 ♥ 🕅 12 🗰 ♥ 🦌 ♥ 🛠 ▼ 🧏 ▼ 🧏 ▼ 🐰 ▼ 🐰 ▼ 🐰 ▼ 💥 ▼ 🕅 12 👘 ♥ 🦙 ▼ 🖓 ▼ 🖁 ▼ 🖇 ▼ 🕄 ▼ 🕅 12 👘 ♥ 🐂 ♥ 🖓 ▼ 🖉 ▼ 🕅 12 👘 ♥ 🐂 ♥ 🖓 ▼ 🖉 ▼ 🕅 12 👘 ♥ 🐂 ♥ 🖓 ▼ 🖓 ▼ 🕄 ♥ 🖉 ♥ 🖉 ♥ 🖉 ♥ 🖉 ♥ 🖉 ♥ 🖉 ♥ 🖉 ♥	
Simple Mixture Analysis Analyze Settings Report Analysis Data Result Mixture Mixture Name: Aloe Vera ANalysis - Freeze Dried Description: All compounds test for A vera Sample Details Sample ID Weight(mg):	Experiment Name: Aloe Vera ANalysis - Freeze Dried All compounds test for A vera Formula Editor	
Reference Weight(mg) Metadata SOP: Aloe Vera _ Freeze Investigator: John Edwards Customer: 2 Customer Sample Number: AAF22103 - LotG12 Comments:	LEGEND: OTHERS: OTHERS: OTHERS: C1: Concentration of: lactic a IR1: Reference Integral of range [7.66, 7.55] NWI 1: Reference Integral of range [7.66, 7.55] MW: Molecular Weight C2: Concentration of: b gluc IR1: Integral of range [4.38, 4.27] NN1: Nuclides of range [7.66, 7.55] MW: Molecular Weight C3: Concentration of: a gluc IR1: Integral of range [4.38, 4.27] NN1: Nuclides of range [7.66, 7.55] MW: Reference Weight C4: Concentration of: a gluc IR1: Integral of range [4.38, 4.27] NN1: Nuclides of range [7.66, 7.55] MW: Nolecular Weight of Reference C5: Concentration of: a gluc IR1: Reference MWR: Molecular Weight of Reference C6: Concentration of: a gluc IR1: Reference MWR: Molecular Weight of Reference C7: Concentration of: gluc IR1: Reference IR1: Reference C3: Concentration of: socitic lactone IR1: Reference IR1: Reference C10: Concentration of: Ethanol IR1: Reference IR1: Reference	
	W) 1 4.38 4.27 1 OK Cancel DOM 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0	

1

9/20/2013



P

NA

Concentration

1.00

0.36

3.21

4.29

18.06

5.27

4.38

6.92

0.06 0.09

2) Pre-Processing of Large NMR Datasets for Chemometric Regression Analyses to Derive Chemical and Physical Properties

Third Generation NMR - 2013– Aspect AI NMR System New magnet design – 30mm bore size

- The amount of magnetic pieces that assemble the magnet reduced from 34 to 10. Reduction in Mechanical Complexity
- Bore size of the magnet was increased to 30 mm improved temperature susceptibility
- Improved temperature and shim stability.

New Digital Spectrometer Design - reduces footprint, improves signal processing capabilities Probe - Improved Probe Q for Higher Sensitivity. Software – Windows 7 – Improved Chemometric Capabilities

September 12, 2013

NMReady 60

42 MHz NMR 3-5 mm Samples Lab Only

nanalysis

Pulsar

60 MHz NMR 3-5 mm Samples Lab Only

Fourier 60

60 MHz NMR 3-5 mm Samples Lab Only

MobiLab™ SPECTRA 2T

85+ MHz NMR 3-5 mm Samples Lab Only

SCIENTIFIC

Picospin 45 and 80

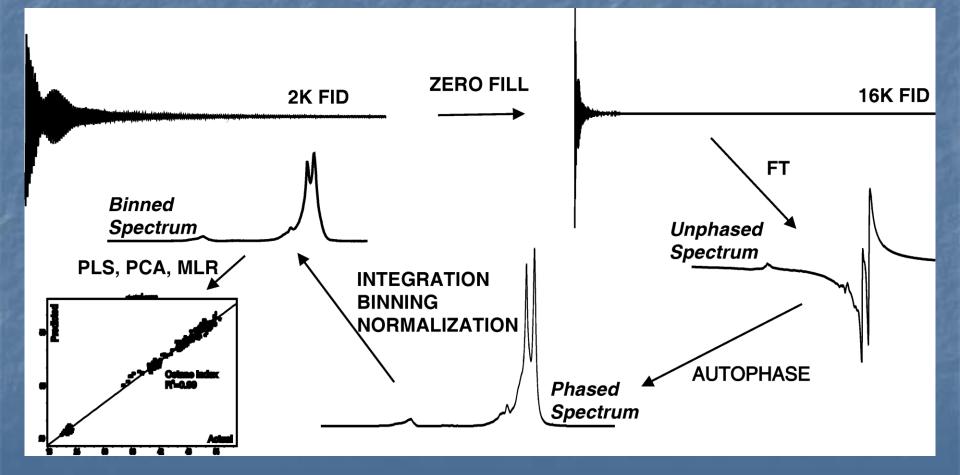
45 MHz and 82 MHz NMR 300 micron capillary injection Lab Only

aspectimaging

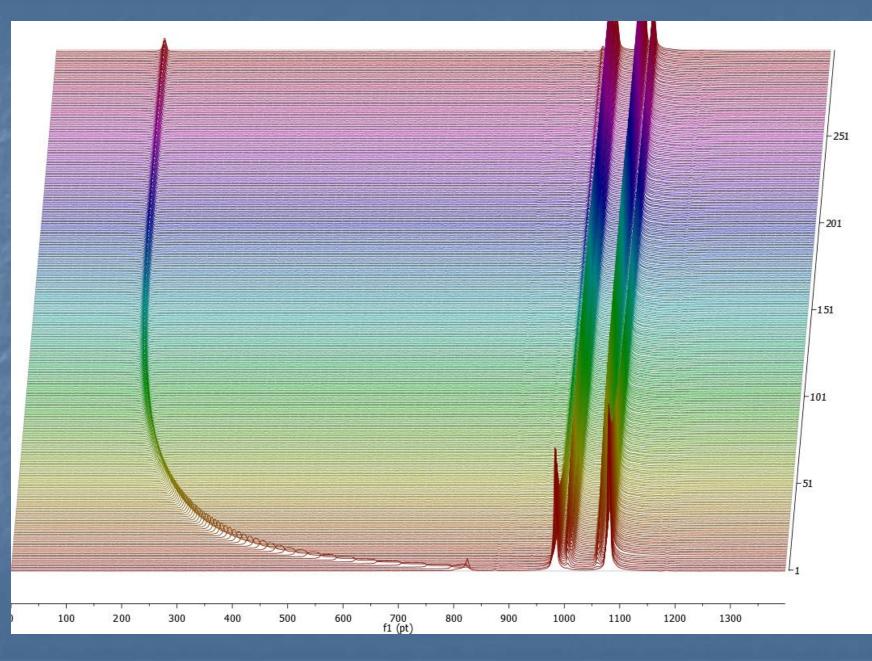
60 MHz NMR 3-10 mm Samples Lab or On-Line

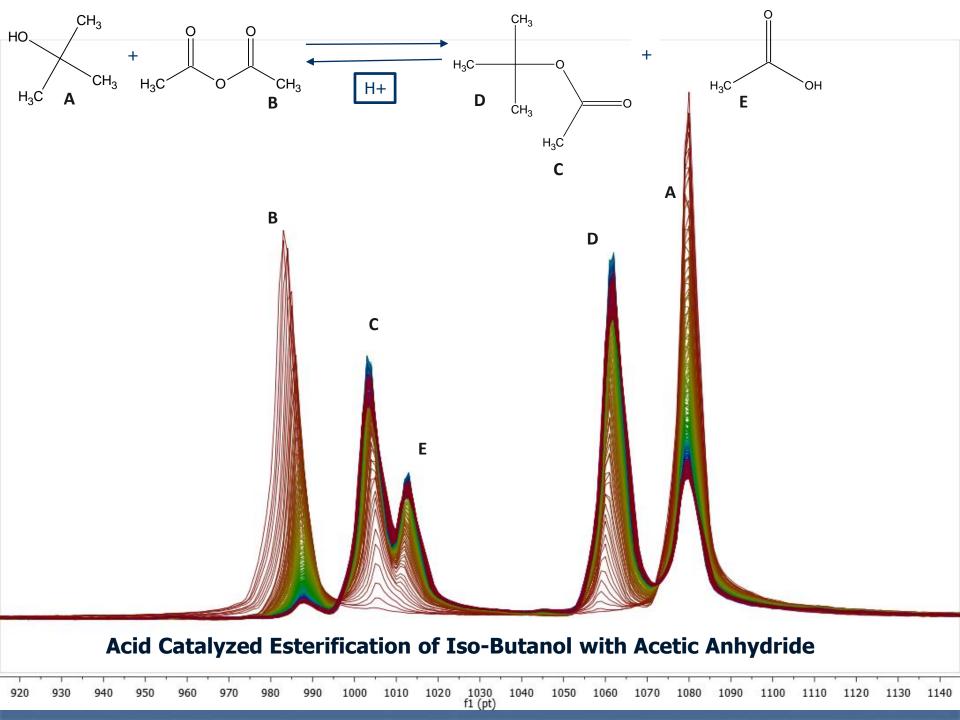
60 MHz NMR 3-10 mm Samples Lab or On-Line

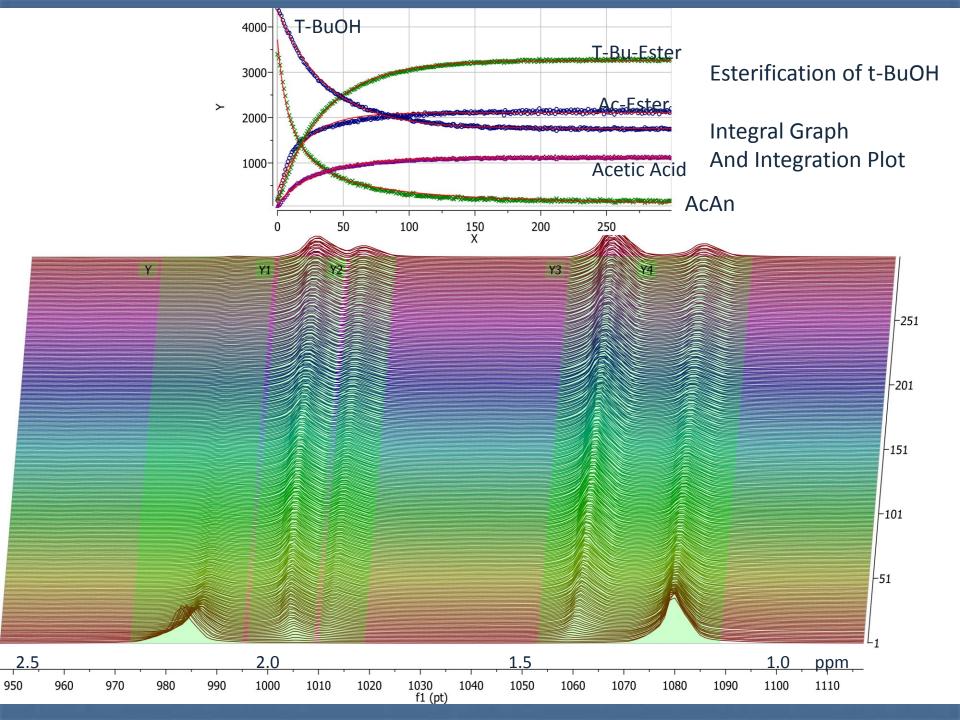
60 MHz NMR

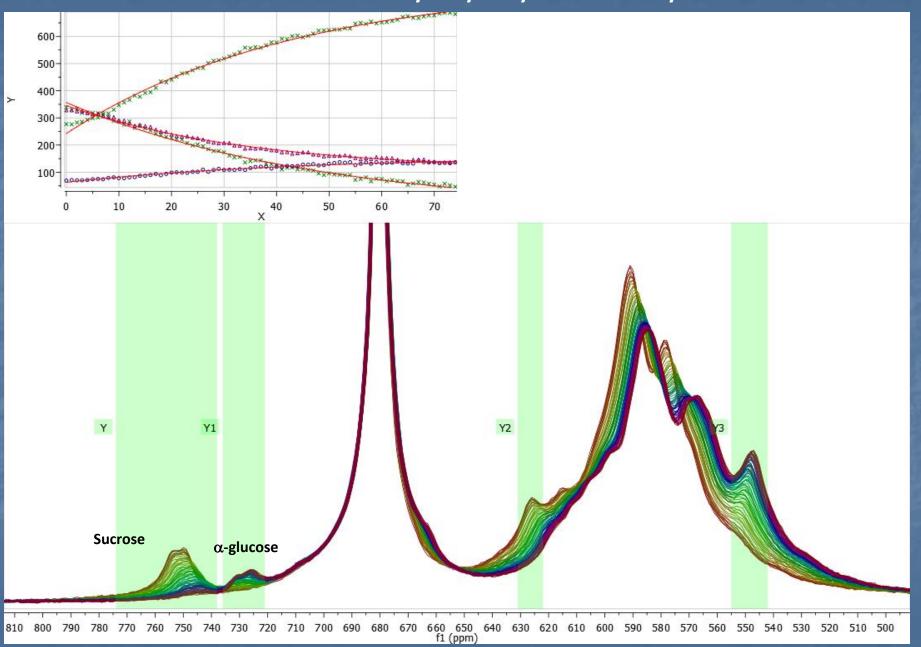

Lab Only

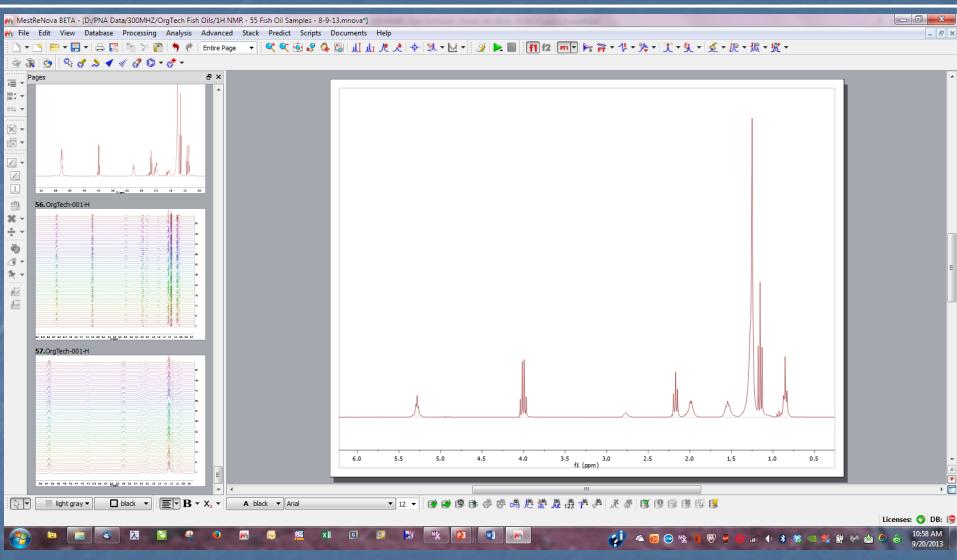
3-5 mm Samples

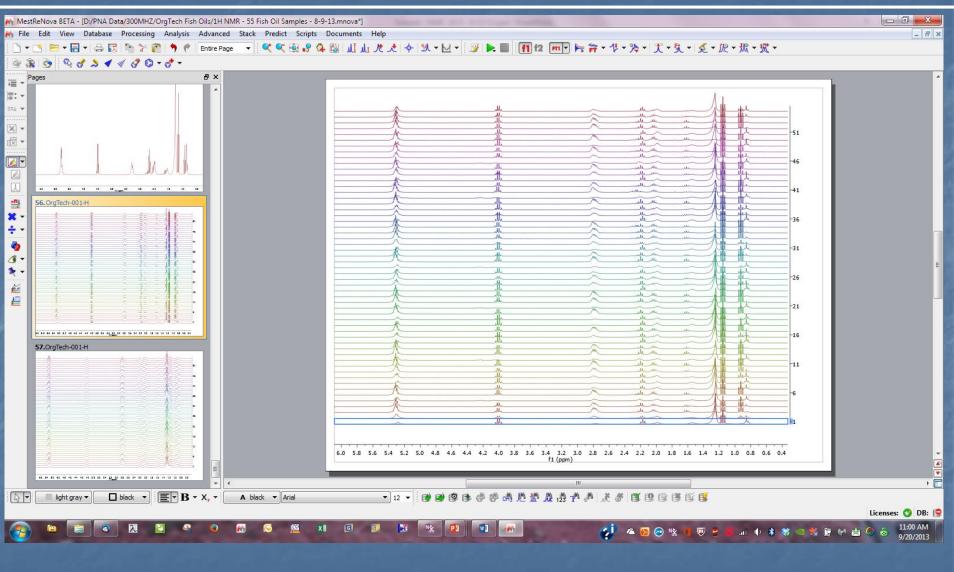


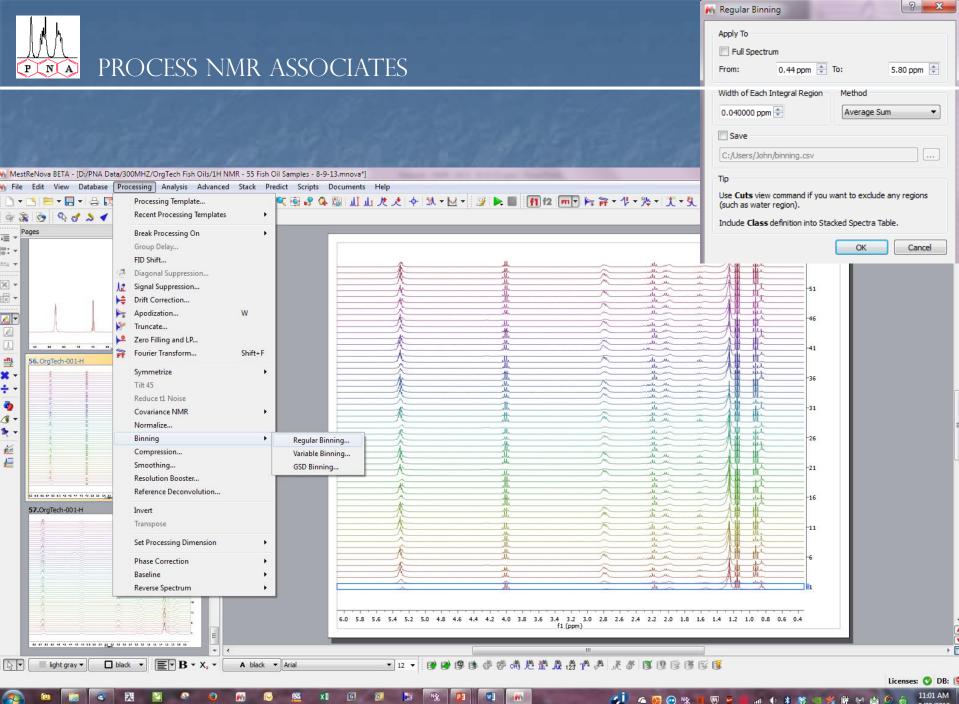


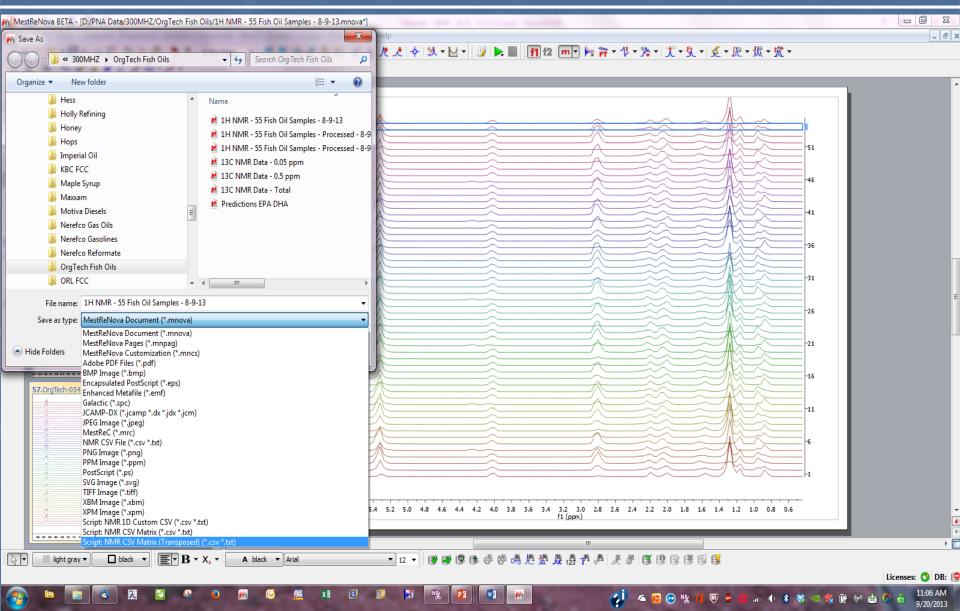

NMR Data Processing for Input into Chemometrics – PCA/PLS


¹H NMR Reaction Monitoring – Esterification of t-butanol with acetic anhydride




1H NMR – Sucrose Hydrolysis by Invertase Enzyme





i Mil 🎻 🍊 👩 💿 🗞 🔳 🗑 🗧

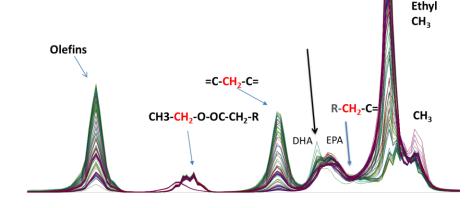
9/20/2013

Transposed CSV Output of Stacked Plot – Yields rows that have integration bin values

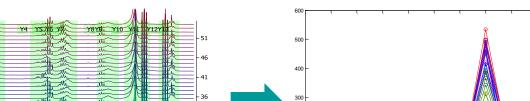
Input as X Variable Data into Chemometrics Software Packages

	C. And St. Cont.	1.00			1.00		the second		16 1 1 1		1.1.1.1.1		1000	1000		1.00	1000	1.000	1200		118 4	12 A. 18	
x 🛛 📙	५ ले 🧀 🗋	Ŧ						1H NMF	R - 55 Fish Oi	il Samples - I	Processed - 8	8-9-13 - Trar	nsposed.txt -	Excel							?	<u> </u>	8 ×
FILE	HOME INSERT	PAGE LAYC	DUT FO	RMULAS	DATA	REVIEW	VIEW	ADD-INS	Team													Sig	gn in 🖂
🚔 🔏	Cut	-				~						FFFFFFFFFFFFF					-		∑ AutoSum	τ <u>Δ</u>			
5	Copy -	ri •	r 11 • A	A A =		*/ • F	Wrap Text	G	eneral	*	i∎≢		Normal	Ba	d				✓ Fill -	ĭ <mark>A</mark> Ţ			
Paste	17 B	r <u>u</u> - 🖽	- 💍 -	A - =	==	∈ += ≣	Merge & Ce	nter - \$	5 - % ,	€.0 .00 .00 →.0		Format as	Good	Ne	utral		isert Delete	Format			Find &		/
	Format Painter			_					, ,,		Formatting	r Table ▼					- ·	- ·	존 Clear 🔻	Filter *	Select *		/
Clipk	board 🕞	Font		G.		Alignment		Fai	Number	r Gi			Styles				Cells		1	Editing			^
B3	13 🔹 : 🗙 🗸 $f_{\rm x}$ Company-002-H									~													
A	В	с	D	E	F	G	Н	Ι	J	К	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	X
1 #	Title	Class	0.44	0.48			0.6	0.64	0.68	0.72	0.76	0.8	0.84	0.88	0.92	0.96	1	1.04	1.08	1.12	1.16	1.2	
2	1 Company-001-H			0.144009								2.15934	23.6381	52.8441	6.36356	3.52815	1.19626	2.57394	4.72435	8.20348	63.0575	30.8919	75.5
3	2 Company-002-H		0.107261								0.58481	1.18022		30.0876	15.4768	19.3956	1.89845	1.68885	2.86355	6.73957	50.0764	26.2503	43.1
4	3 Company-003-H								1.1047		1.03632	1.10004	8.67017	12.7737	28.2638	44.0678	2.77258	2.2799	3.42229	7.23007	58.9021	22.4964	6.7
5	4 Company-004-H					0.091731				0.697931		0.425531	5.71628	17.3875	19.2976	37.9437	1.36392	1.01093	1.48676	2.92805	56.7935	22.3672	15.0
6	5 Company-005-H		0.079434	0.09965					1.15428		0.577728	1.39962	19.8088	46.399	13.4269	16.63	2.47459	2.66503	3.90892	4.02967	5.05221	10.717	79.6
7	6 Company-006-H					0.536874		0.885496	1.00038	1.60445	1.52066	1.05134	2.67389	5.56013	23.8379	55.2909	2.08176	1.08645	1.36292	2.56548	60.1246	23.0406	2.9
8	7 Company-007-H												10.9614	34.7866	12.3787	16.8937	1.59441	1.58721	2.87822	4.84518	52.0737	23.579	32.4
9	8 Company-008-H		0.095418	0.125235	0.12924	0.163203	0.210163	0.388019	0.530731	0.462706	0.699072	1.92013	19.985	49.5242	8.23172	6.00705	1.08974	2.21027	4.23658	7.29868	61.0142	29.8742	58.9
10	9 Company-009-H		-0.22113				-0.20843		0.137029	-0.02032	-0.05899	-0.17672		32.8345	11.8565	17.3489		0.851188	1.46024	1.86727	50.2474	21.1515	25.6
11	10 Company-010-H		-0.05419	-0.0493					0.171838			0.449972	7.02454	20.2409	17.7069	37.301		0.786771	1.34382	2.49798	56.7919	22.4431	14.8
12	11 Company-011-H			0.300446		0.427658				1.17814		0.922105	2.5548	5.56235	25.4703	54.1361		0.787402	1.19677	3.30126	61.0784	21.6314	2.8
13	12 Company-012-H											1.11395	19.358	48.0757	12.1855	14.1374	1.9223	2.51229	3.90799	4.15723	5.18827	9.38692	81.6
14	13 Company-013-H										0.812315		3.53186	7.63612	23.2051	54.9359	1.23832	1.02691	1.55907	2.7473	62.9075	23.5596	3.16
15	14 Company-014-H										0.895106	1.34786	7.84681	15.1299	24.8223	40.8917	1.89976	1.56967	2.7833	6.79534	57.2828	21.3652	13.6
16	15 Company-015-H		0.455719	0.513451				0.931807	1.13217	1.08488	1.48531	2.65457	23.4028	56.1842	6.71429	3.91272	1.62215	3.33648	5.75574	7.88115	67.5283	31.6666	63.
17	16 Company-016-H					0.530993			1.33903	1.11367	1.13618	1.48818	11.9466	35.4787	12.0093	16.7879	2.16613	2.40576	3.60135	5.20682	53.6083	23.7026	36.4
18	17 Company-017-H		-0.05024	-0.05114						0.37258	0.282528	0.538246	7.20943	16.4787	20.6841	42.7779	1.78658	1.27386	1.65391	3.18812	57.8641	22.6989	11.4
19	18 Company-018-H		0.314851	0.34379	0.39507	0.431782	0.489775	0.659988	0.885875		0.9504	1.79309	16.4326	46.7138	8.93164	8.25829	1.39962	2.18072	3.65051	5.45473	56.3692	24.6292	42.5
20	19 Company-019-H		0.1701	0.202194	0.214554	0.249408	0.304335	0.482887	0.621397	0.607587	0.917485	2.20174	20.5395	47.6002	8.64537	7.58005	1.25002	2.52154	4.79603	8.26367	60.9813	29.9067	62.4
21	20 Company-020-H		0.43606	0.476889	0.526294	0.601875	0.759663	0.785471	0.852694	1.36929	1.30606	1.37867	3.23357	6.97762	29.6673	48.589		0.848623	2.04099	6.72992	58.9535	19.7318	2.5
22	21 Company-021-H		0.144025	0.169038	0.179062	0.208792	0.250149	0.448384	0.943669	0.550026	0.639967	1.48284	19.3436	48.2756	10.3399	11.267	1.87105	2.42981	3.73294	3.64938	4.86935	11.4242	84.7
23	22 Company-022-H		0.106643	0.159341	0.178724	0.250868	0.51425	0.462579	0.447058	1.00844	0.923869	0.639426	3.50267	10.7105	21.5498	45.9834	1.86347	0.993845	1.41609	2.45412	59.2514	22.8764	8.18
24	23 Company-023-H		0.052343	0.071077	0.082147	0.115667	0.229057	0.295483	1.57265	0.817217	0.578814	0.637055	6.3711	11.9829	24.2862	51.6124	3.4868	1.8651	2.92516	5.00667	58.6105	22.5377	5.19
25	24 Company-024-H		0.091797	0.091164	0.116455	0.139074	0.168676	0.415975	0.545992	0.419775	0.525076	2.48202	26.7502	57.7197	4.6903	1.55721	1.26253	2.31813	4.25329	8.5196	65.5625	34.6969	92.2
26	25 Company-025-H		-0.14624	-0.13645	-0.13707	-0.13939	-0.11618	-0.0622	0.36191	0.072447	-0.05663	0.122772	9.86411	30.8677	14.4173	24.525	1.32968	1.08422	1.89236	2.95368	54.7068	22.3331	23.4
27	26 Company-026-H		0.008394	0.005375	0.01173	0.023744	0.049533	0.112853	0.235418	0.341017	0.351379	0.860331	6.7401	16.0609	23.5047	37.2001	0.981952	0.979656	1.8781	6.04143	55.9354	21.3685	16.8
28	27 Company-027-H		0.092964	0.10942	0.121384	0.147757	0.19506	0.316579	1.0731	0.532938	0.48578	0.842769	12.254	35.5842	11.5889	16.8806	1.91477	1.85509	2.88239	4.33507	52.2072	22.424	36.6
29	28 Company-028-H		0.124656	0.139742	0.15409	0.173031	0.211245	0.41201	1.03266	0.553477	0.605849	1.56189	19.1295	47.7155	10.6107	11.6964	2.03256	2.43317	3.63973	3.74119	4.92939	12.1567	83.7
30	29 Company-029-H		0.016165	0.051521	0.08007	0.14888	0.34119	0.27804	0.22878	0.798851	0.641459	0.325474	1.71717	4.74846	23.8296	54.3775	1.52536	0.68677	0.82446	2.07429	61.4182	22.8141	2.93 🚽
	1H NMR - 55	Fish Oil San	nples -	(+)										4									Þ
READY																			Ħ			I	+ 100%
	10 📻 🧃	2	a 😜	۲	F	J 🔛	XI	G G		₩2 🗗		-		¢	1 🗛 🗖	👝 N¥) 🗴 💥 🤇	a 🔸 🖷	M 🖄 🖉	<u> </u>	12 AM

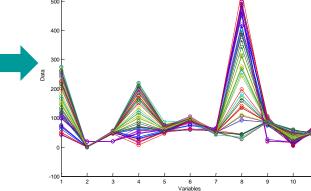
9/20/2013

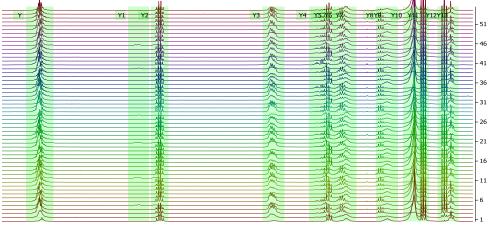

PLS Regression Analysis to Obtain Predictive Model of EPA and DHA Omega-3 Fatty Acids at Various Points Of Nutritional Supplement Manufacturing Process

NMR ID	EPA (Area %)	DHA (Area %)	Sample Description
FO3h001	0.64	0.01	First Esterification
FO3h002	21.55	13.34	First Esterification
FO3h003	62.97	15.66	Clathration
FO3h004	29.43	18.16	Mol Dist
FO3h005	14.21	9.54	Pollock Oil
FO3h006	52.74	28.90	Separator
FO3h007	15.21	10.51	PolyUnsat Ester
FO3h008	7.18	0.23	First Esterification
FO3h009	16.95	10.04	First Esterification
FO3h010	36.35	16.47	Clathration
FO3h011	61.09	21.26	Mol Dist
FO3h012	13.32	5.95	MSC Pollock Oil
FO3h013	71.78	7.43	Separator
FO3h014	41.40	25.91	PolyUnsat Ester
FO3h015	1.19	0.06	First Esterification
FO3h016	11.73	12.23	First Esterification
FO3h017	43.38	19.30	Clathration
FO3h018	6.07	2.78	Clath Raffinate
FO3h019	9.77	0.72	First Esterification
FO3h020	58.93	23.41	Mol Dist
FO3h021	10.62	5.18	MSC Pollock Oil
FO3h022	43.91	21.52	Separator
FO3h023	54.05	28.18	PolyUnsat Ester
FO3h024	0.00	0.00	First Esterification
FO3h025	26.97	12.82	First Esterification


¹H NMR – 60 MHz

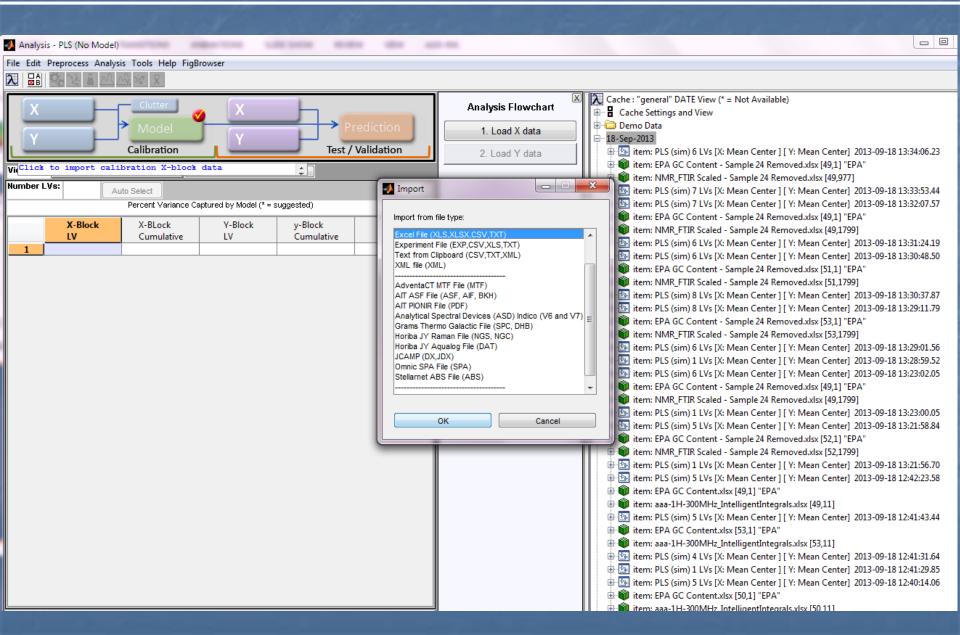
Experimental


Aspect AI – 60 MHz Cryogen-Free NMR Spectrometer 24 pulse on pure sample in 5 mm tube Locked on 1H NMR signal In MNova 8.1.2 SPC Files Imported, Stacked, Binned at 3 Hz interval, Area Normalized to 100 Saved as Transposed Ascii Matrix For Peak Integrals Used Advanced Feature – Create Integral Graph from Stacked Plot PLS Regression Performed Thermo Grams IQ and Eigenvector Solo

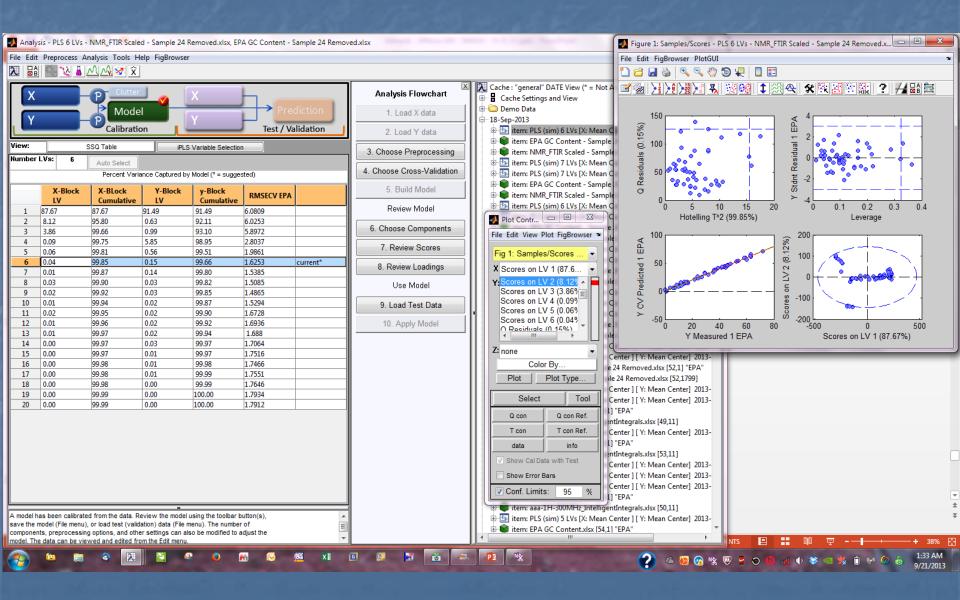


95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200

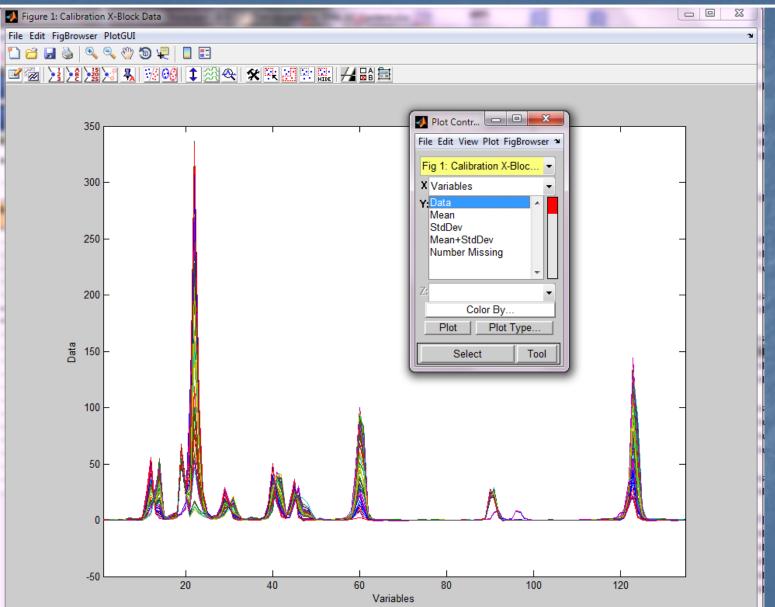
15 90



5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 fl(ppm)



Solo+Model_Exporter Workspace Browser	
File Edit View Analyze Help FigBrowser New Version!	لا ا
🕅 🗅 🕮 🛸 🖬	
Current Folder : D:\PNA Data\300MHZ\OrgTech Fish Oils	
Analysis Tools	Workspace
Topics (double click to open)	Current Workspace Variables
🖕 🚖 FAVORITES	Name Value Byt
🛶 DataSet Editor	pls_modeljohnjohnnewhp_20130918t13340623 <pls model=""> 425</pls>
	Model Cache
PARAFAC - Parallel Factor Analysis	Cache : "general" DATE View (* = Not Available)
PCA - Principal Component Analysis	Cache Settings and View
SMMA - Purity	🗎 🗁 Demo Data
REGRESSION	□ 18-Sep-2013
CLS - Classical Least Squares	item: PLS (sim) 6 LVs [X: Mean Center] [Y: Mean Center] 2013-09-18 13:34:06.23
LWR - Locally Weighted Regression	item: EPA GC Content - Sample 24 Removed.xlsx [49,1] "EPA"
MLR - Multiple Linear Regression	tem: NMR_FTIR Scaled - Sample 24 Removed.xlsx [49,977]
MLR DOE - Designed Experiment MLR	tem: PLS (sim) 7 LVs [X: Mean Center] [Y: Mean Center] 2013-09-18 13:33:53.44
NPLS - Multiway Partial Least Squares	
PCR - Principal Component Regression	tem: EPA GC Content - Sample 24 Removed.xlsx [49,1] "EPA"
PLS - Partial Least Squares	tem: NMR_FTIR Scaled - Sample 24 Removed.xlsx [49,1799]
SVM - Support Vector Machine	⊕ ⊡ item: PLS (sim) 6 LVs [X: Mean Center] [Y: Mean Center] 2013-09-18 13:31:24.19 □ item: PLS (sim) 6 LVs [X: Mean Center] [Y: Mean Center] 2013-09 18 13:31:24.19
	⊕ ⊡₂ item: PLS (sim) 6 LVs [X: Mean Center] [Y: Mean Center] 2013-09-18 13:30:48.50 ⊕ ⊕ item: EPA GC Content - Sample 24 Removed.xlsx [51,1] "EPA"
	tem: EPA GC Content - Sample 24 Removed.xisx [51,1] EPA item: NMR_FTIR Scaled - Sample 24 Removed.xisx [51,1799]
KNN - K-Nearest Neighbor	
PLSDA - Partial Least Squares Discriminant Analysis	
SIMCA - Soft Independent Modeling of/by Class Analogy	item: EPA GC Content - Sample 24 Removed.xlsx [53,1] "EPA"
SVMDA - Support Vector Machine Discriminant Analysis	item: NMR_FTIR Scaled - Sample 24 Removed.xlsx [53,1799]
⊕ → TRANSFORM	
TOOLS	
	item: EPA GC Content - Sample 24 Removed.xlsx [49,1] "EPA"
A EIGENVECTOR RESEARCH INCORPORATED	



Acknowledgements Paul Giammatteo – PNA Tal Cohen – ASPECT AI and Modcon Adam Dicaprio, Daniel Edwards – PNA Mike Bernstein – MestreLabs (SMA Development)

For more information and applications visit www.process-nmr.com